各位朋友们是否也想知道“指数分布无记忆性”,这个问题的分析和解答呢?相信你通过以下的文章内容就会有更深入的了解,话不多说,接下来就跟着小编一起看看吧。
指数分布的无记忆性是什么?
指数分布的无记忆性是指数函数的无记忆性来自于泊松过程k=0时的 时间指数性,而泊松过程k=0时的 时间指数性 来自于泊松分布时 lambda的恒定性,也就是离散情况下,二项分布的n*p的恒定性。
指数分布的一个重要特征是无记忆性(Memoryless Property,又称遗失记忆性)。如果一个随机变量呈指数分布X~E(A),当s, t ≥0时:P{x s+tlX s}= P{x t}。
指数函数的无记忆性来自于泊松过程k=0时的“时间指数性”,而泊松过程k=0时的“时间指数性”来自于泊松分布时 lambda的恒定性,也就是离散情况下,二项分布的n*p的恒定性。
“寿命”类分布的方差非常大,以致于已经使用的时间是可以忽略不计的。
指数函数的一个重要特征是无记忆性(Memoryless Property,又称遗失记忆性)。这表示如果一个随机变量呈指数分布,当s,t0时有P(Tt+s|Tt)=P(Ts)。
它能再使用一段时间t 的概率与一件新灯泡能使用时间t 的概率一样。其实你只需要知道,无记忆性就是指 从任意时刻开始,服从的规律不变。此题从a到a+1服从的规律与从0到1服从的规律一样。纯手打 望采纳。
指数分布具有无记忆性,这如何形象理解?
指数函数的一个重要特征是无记忆性(Memoryless Property,又称遗失记忆性)。这表示如果一个随机变量呈指数分布,当s,t0时有P(Tt+s|Tt)=P(Ts)。
指数分布的一个重要特征是无记忆性(Memoryless Property,又称遗失记忆性)。如果一个随机变量呈指数分布X~E(A),当s, t ≥0时:P{x s+tlX s}= P{x t}。
指数函数的无记忆性来自于泊松过程k=0时的“时间指数性”,而泊松过程k=0时的“时间指数性”来自于泊松分布时 lambda的恒定性,也就是离散情况下,二项分布的n*p的恒定性。
指数分布无记忆性
1、指数分布的一个重要特征是无记忆性(Memoryless Property,又称遗失记忆性)。如果一个随机变量呈指数分布X~E(A),当s, t ≥0时:P{x s+tlX s}= P{x t}。
2、指数分布的无记忆性是马尔科夫链无后效性,也就是取决于你当前的状态。所以在分布中,只有指数分布能满足这一点,因为指数分布的无记忆性,不管你之前在某个状态停留了多少时间,并不影响你是否继续停留或者转移。
3、指数分布的无记忆性是指数函数的无记忆性来自于泊松过程k=0时的 时间指数性,而泊松过程k=0时的 时间指数性 来自于泊松分布时 lambda的恒定性,也就是离散情况下,二项分布的n*p的恒定性。
如何理解指数分布的无记忆性?
指数分布的无记忆性是指数函数的无记忆性来自于泊松过程k=0时的 时间指数性,而泊松过程k=0时的 时间指数性 来自于泊松分布时 lambda的恒定性,也就是离散情况下,二项分布的n*p的恒定性。
指数分布的一个重要特征是无记忆性(Memoryless Property,又称遗失记忆性)。如果一个随机变量呈指数分布X~E(A),当s, t ≥0时:P{x s+tlX s}= P{x t}。
指数函数的无记忆性来自于泊松过程k=0时的“时间指数性”,而泊松过程k=0时的“时间指数性”来自于泊松分布时 lambda的恒定性,也就是离散情况下,二项分布的n*p的恒定性。
通过前文的阐述,您对"指数分布无记忆性"应该已经有了一个初步的了解。如果您希望获得更详细、更全面的相关内容,请继续关注我们的网站。